Theoretical study on the effect of pressureon the
electronic structure of grey tin

Mohammad G. Merdan®® Mudar A. Abdul Srattar®, and Ahmed M.
Abdul-Littef @~

) College of Science, Babylon University, Hilla, Iraq
@ Ministry of Science and Technology, Baghdad, Iraq

Abstract

A large unit cell (LUC) within intermediate rlegt of differential overlap (INDO)
formalism has been used to estimate the electiomiperties ofa —Snand their pressure
dependence. The calculated properties are, in genergood agreement with the available
experimental values except the direct band gap.ifidrease of pressure is predicted to cause:
a decrease of the absolute value of the cohesemgga linear increase of the direct band gap
with a pressure coefficient of 0.06 eV/GPa, a liniearease of the valence band width, a
decrease of the conduction band width, a slightredes® of the electronic occupation
probability for the s orbital with a slight increasf this probability for the p orbital, and a
decrease of the X-ray scattering factors.
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1 Introduction

The electronic and structural properties of tin\agy sensitive to pressure conditions
[1]. The ground state, grey tif@ —Sn), has the diamond structure and is known to be

a semiconductor with zero band gap (semi-metalj. dlso exists in the— Sn
structure (white tin) at atmospheric pressure ad@}€. The metallicB - Srphase is

a tetragonal distortion of diamond with two atones pnit cell. This phase is stable up
to 9.5 GPa at room temperature, where it transfaona bct form, followed by a
transformation to the cubic bcc structure [2]. Tehésmperature and pressure-driven
phase transformations have caused tin to be ofidenable experimental and
theoretical interest [2-11].

The electronic and structural properties of compgstems like tin require a
fully guantum-mechanical description. Accurate fult-principles calculations such
as Hartree-Fock with correlation correction [12fahe local density approximation
[13,14] are extremely demanding from the computetiopoint of view. The
development of simpler yet reliable approximatehuds of calculations is therefore
crucial to progress in this field

" Corresponding author: Ahmed M. Abdul-Lettif
E-mail address: abdullettif@yahoo.com



An alternative to first principle methodshiash has already provided numerous
significant results, is the so called the larget ucell-intermediate neglect of
differential overlap (LUC-INDO) [15-18]. The semimgirical LUC-INDO method is
capable of simulating real crystals because it dalk¢o account the property of
periodicity. Due to its semi-empirical characterdaa specific parameterization
scheme, the computer program is not cumbersome tiamel consuming in the
treatment of the electronic and spatial structdireomplex systems.

A lot of studies have been carried out on the ptogse of tin and its phase
transitions [1-11]. However, there are comparayifeler studies on the pressure and
temperature dependence of these properties. Theohithe present work is to
investigate the effect of pressure on the eleatrand structural properties of—Sn
using the LUC-INDO formalism which will be outlined the next section.

2 Calculation method

A quantum-chemical semi-empirical INDO method deped especially for crystals
[19] is used in the present work. This quantum cataonal formalism has been
used with great success especially exploiting theasled LUC (Large Unit Cell)
model [18]. Within the method each molecular oibita constructed as a linear
combination of atomic orbitals [19] in order to eggs the wave function of the
system. Each energy value is calculated by the éffcensistent field method and
the total energy of the system is obtained. Théchdea of LUC is in computing the
electronic structure of the unit cell extended spacial manner at k=0 in the reduced
Brillouin zone. This equivalent to a band structcaéculation at those k points; which
transform to the Brillouin zone center on extendimg unit cell [18].

The crystal wave function in the LUC-INDO formalisis written in the
following form:

[/I(k,r) = Nlllzzchkwp (r _Tv)exp(k'Tv) (1)
v p

where N is the number of LUCs in the crystalCdenotes the combination
coefficients of the hybridized orbitalg, is the atomic wave function, k is the wave

vector, and T denotes the lattice translation vector. The Harffeck equation in this
case ( Rothan-Hall equation ) can be written a% [20

Z (quk _Ek Squ pk =0 (2)

p

where the summation index p goes over all the atostates of the LUC,
represents the Fock Hamiltonian which is given by

F oo :Z(gop(r —To){H T‘%(r —TV)>exdik.Tv) €))

and Qq« is the overlap integral defined by

Sk = 2% (1 ~T,) g (r —T,)) explkT,) 4



where H in Eq.(3) represents the Hamiltonian operatorhef total energy Ewhich
is defined as

Z,7Z, 1
"Ik, T2z 2P ®
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where the first term of the right side of Eq.(5pmesents the inter-nuclear potential
energy, and B, is the density matrix which has the following e>gsien:

0CC

Pir = 2)C},:C i exelik.(T, - T,)) (6)

The summation is over the occupied (occ) orbitally.oH ;' refers to the matrix

element of the Hamiltonian of a single electronthe field of the nuclei, and its
operator representation is

core _— 1 2 ZA
H 2D ZA: : (7)
where Z is the core charge, and the summation is overglien It should be pointed
out that our calculations are carried out at k=Dksvalue in egs.(1,3,4,6) is set to
zero. For more details of LUC-INDO formalism ane fimal form of the Fock matrix
elements at k=0, see Refs [15-22] . The Roothah-eétplation are solved by first
assuming an initial set of the linear expansionffaent (C ), generating the

density matrix (B,), and computing the overlap integral and the fyséess of the
Fock matrix elements (F, ). Then one can calculate the electronic energy, (&d a
new matrix of G, coefficients can be obtained. This procedure istinaed until
there is no significant variation between the daled value of G and E of the
successive iterations.

An initial guess of the wave function is predictading the basis set and
adopting Slater-type orbitals [19]. The initial ggeof the wave function is important
since an optimum guess reduces the number of idesaperformed to obtain the
converged electronic energy. A large number ofattens will result in an
accumulation of the computational errors. Theisjial guess of the wave function is
given as an expected linear combination of the et@tates of one cell. The tolerance

of convergence of the total electronic energy aglbph our calculations i§x10™
eV. A large unit cell of 8 atoms, which is the centional Bravais lattice of the
diamond structure, has been used. Interactionhefatoms in the central Bravais
lattice with the surrounding atoms up to the fourghghbors are included. It should
be pointed out that the increase of the LUC sidkresult in an increase of the results
accuracy [23], but this complicates the calculati@nd needs very long time in
comparison with the time needed for 8-atom LUC waltons.



3 Results and discussion

3.1 Choice of empirical parameters

The empirical parameters included in the LUC-IND®thod are the orbital exponent
, the bonding parametds’®, %(IS+AS), and %(Ip+Ap). The symbols | and A

refer to the ionization potential and the electedfinity respectively. The optimum
values of these empirical parameters usedxferSn in the present work are listed in
Table 1. The value of the orbital exponehtdetermines the charge distribution of

electrons around the nucleus. This parameter igdvaitl the total energy reaches its
minimum value. As a consequence, this parametassasen in the same way of the
ab intio methods. Comparing the value for a —Sn crystal with that obtained by

Clementi and Roetti [24] for atoms, shows that thevalue for solids is larger than
that for atoms. This indicates the contracted ahatigtribution for solids and the
diffuse charge distribution for atoms. The absol#tkie of the bonding paramett

of a—Sn crystal is noted to be much less than that foreadks [25]. This can be
explained by noting that the number of bonds indsisl higher, then the interaction

energy is distributed over all these bonds. Theevalf the% (I +A,) parameter of

o —Sn crystal is less than the corresponding value ettt free atom. This indicates
that the s orbitals of the solid are less connetrigtieir atoms than in the free atom.

A reverse observation is reported for ﬂée{l » TA,) parameter.

Tablel Empirical parameters used in the present warlafe Sn.

Parameter Value
( (a_u_l) 1.9965
B°(eV) -5.3345
1 -9.452
E(I s+HA) (eV)

-5.632

20, +A) @)




3.2 Electronic and structural propeeti

Using the computational procedure described ini@ec®, the electronic and
structural properties oft —Sn crystal at 0 K and zero pressure are calculatédtaes
in Table 2 in comparison with other computationad axperimental results.

The equilibrium lattice constantgjas determined by plotting the total energy
as a function of the lattice parameter, as depictdtg. 1. The calculated value of the
equilibrium lattice constant (12.263 a.u) is in dagreement with the experimental
value of 12.255 a.u [26].

12.15 12.2 12.25 123 12.35
-28.304
-28.306 -
-28.308 -

-28.31
-28.312 -
-28.314 -
-28.316 -
-28.318

Total energy (a.u)

Lattice constant (a.u)
Fig.1 Total energy of(a —Sn) as a function of lattice constant

The cohesive energy is calculated from the tatakgy of the large unit cell.
Since the large unit cell in the present work isnposed of 8 atoms, the cohesive
energy can be determined from the following expogss
E.,=E' /8-E.—E, (8)

free

where Eee denotes the free atom sp shell energyjsBhe vibrational energy state,
which is referred to as zero-point energy, and/disie is 0.03 eV [28]. The cohesive
energy value of present work (-3.144 eV) is alsogwod agreement with the
experimental value of -3.14 eV [27]. This is duethe including of the exchange
integrals, correlation correction, and zero-poinergy in the present analysis. The
correlation correction is the correction includedtdke into account the fact that the
motions of electrons are correlated pairwise topketectrons apart. Correlation
energies may be included by considering Slaterraétates composed of orbitals
that represent excited state contribution, and théthod of including unoccupied
orbitals in the many body wavefunction is refertecs configuration interaction (CI)

[20]. Another method to estimate the correlatiomreéction, which is used in the
present work, is the Moller-Plesset perturbatioeotly [20]. This correction is

calculated to be 0.27 eV.



Table 2 The electronic and structural propertiesoof Sn crystal obtained
in the present work in comparison with other resul

Computational
Property Experimental value
Present work  Others

Lattice constant 12.263 12.24 [2] 12.255 [26]
(a.u) 12.216 [1]

Cohesive energy -3.144 -2.8 [5] -3.14 [27]
(eV/atom) -3.723 [1]

Valence band width 11.87 1061[5] -
(eV)

Direct band gap 1.76 2.6 [5] 0.0 [27]
(eV)

Conduction band width5.2 - -

(eV)

Hybridization state 4+ A

The calculated direct band gap is considerablyelatban the experimental
value. A similar anomaly was also obtained by Svfsjeusing the Hartree-Fock
approximation. The large computational value ofdlrect band gap can be attributed
to the approximations involved in the LUC-INDO fahsm and Hartree-Fock
method, and to the perturbative treatment of threetation correction [29]. However,
the available non-perturbative correlation corttnethod takes nearly ten times the
computational time needed in Moller-Plesset methdde most significant
approximations that affect the band gap are:

I- Using equal values of and B° for s and p wavefunctions. The difference

between bonding and anti-bonding states is dirgmthportional toB°S, where
the overlap integral S is a function 6f The percentage different @f between s
and p orbitals was reported to be 14.4% for tir].[24

lI- Neglecting the core states will also result in gleet of its effects on the
distribution of the outer valence electrons.

lll- Using the 5s 5p orbitals only without the inclusmf the 4d orbital.



The eigenvalues of the high symmetry points usedetermine the band structure are
listed in Table 3, in comparison with the corregfiog values calculated by Svane

[5].

Table3 Energy bands oft —Sn at ' and X high symmetry points.

Symmetry point Eigenvalue (eV)
Present work Ref. [5]

r -12.04 -16.0

Xiv -7.08 -11.2

Xav -2.8 -3.9

s 0.0 0.0

r, 1.5 2.6

Xic 4.37 4.39

Xac 6.92 -

Ms 5.19 6.6

Some physical properties of solids can be detemninging the analysis
described in the preceding section, such as tlutrehec charge density and the X-ray

scattering factor,.. The valence electrons chaeysity (p, (r)) can be expressed as:
p(r) =2 D Pu®, (NG, () 9
pq

The electronic charge density for some planeg eébn crystal is displayed in Fig. 2.
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Fig.2 Valence charge density ( in atomic unit)amf 3 in the: (a) (001) plane, (b)
(400) plane, (c) (200) plane, and (d) (110) plane.

The X-ray scattering factor)(fs defined by [27].

f, = jpe(r) exp(=iG.r)dv

(10)

where G is the reciprocal lattice vector. In TaBllethe calculated X-ray scattering
factors for a —Sn are listed in comparison with other computatiof2d] and
experimental [31] results. The calculated X-raytterang factors are in good

agreement with the experimental values.

Table4 Calculated X-ray scattering factors af-Sn compared with

other results.

X-ray scattering factor

(") Present work HF[30] Experimental [31]
(111) 44.45 44.47 43.59
(220) 39.57 39.56 38.79
(311) 37.44 37.43 37.40
(400) 35.37 34.54 35.12
(331) 33.03 33.08 33.17
(422) 30.63 31.01 30.19
(511) 30.34 29.93 28.63
(333) 29.42 29.93 28.63




3.3 Effect of pressure on the propertiesief Sn

The pressure dependence of the electronic structurdoe predicted from the present
computational analysis. The pressure dependencehef lattice parameter is
determined using the Murnaghan [32] equation désta

a= a0(1+ §LJ_3B (11)

where a is the lattice parameter at pressure ,Pisahe lattice constant at zero
pressure, B is the bulk modulus at zero pressure, @drepresents the pressure

derivative of the bulk modulus and its value for-Sn is 4.6 [33]. The variation of
the lattice parameter as a function of pressureaferSn is depicted in Fig. 3. This
figure was plotted using the experimental valueBgf of 53 GPa [34] and the

calculated value oB of 4.6 [33].

12.27
12.26 -
12.25 +
12.24 +
12.23 +
12.22 +
12.21 -

12.2
12.19 -
12.18 ‘

0 0.2 0.4 0.6 0.8 1 1.2

Pressure (GPa)

Lattice constant (a.u.)

Fig.3 Lattice constant ofa —Sn) as a function of pressure.

The pressure dependence of the cohesive energgct diand gap, valence
band width, and conduction band width as prediétech our analysis is shown in
Fig. 4, Fig. 5, Fig. 6 and Fig. 7 respectively.
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Fig.4 Effect of pressure on the cohesive energgrel tin.
g P ggrey Fig.5 Effect of pressure on the direct band gap widtgrey tin.
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Fig.6 Effect of pressure on the valence band widtgref tin. Fig.7 Effect of pressure on the conduction band widtgrefy tin.

As it is obvious from Fig. 5, the direct band gapreases linearly with the
increase of pressure, and the pressure derivafivieeodirect band gap equals 0.06
eV/GPa. Wei and Zunger [33] have determined thegure derivative of the band
gap of the three main transitions: X, I' - L, andl" - I for a -Sn to be -0.01, 0.059,
and 0.166 eV/GPa respectively. The direct bandigagetermined from the energy
difference (I', -, ) The observed linear increase of the direct baap with
pressure is due to the linear increase oflthenergy with respect to thie,; energy
as found from the present analysis, and also bgdasnd Liu [3]. The valence band
width is calculated from the energy differenfe, —I; . The I} state is shown to
decrease linearly with the increase of pressur tlas causes a linear increase of the
valence band width as depicted in Fig. 6. The cotidn band width can be
determined from the energy difference ,. —I", . Although the X%c energy is shown
to increase with pressure, the conduction bandhwitkcreases with pressure as
shown in Fig. 7 because the increasd pfenergy is more than the increase at X
energy.

It is found that the s state occupation decreasbstiae increase of pressure as
in Fig. 8, whereas the p state occupation increasbsthe increase of pressure as in
Fig. 9.
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Fig.8 Effect of pressure on the hybridization stat¢hefs orbital ofyrey tin.
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Fig.9 Effect of pressure on the hybridization stat¢hefp orbital ofgrey tin.

The present works shows that the X-ray scatteetpfs decrease as pressure
increases. This behavior is obvious in Table 5sTdan be interpreted as follows:
increasing pressure decreases the inter-planandestd,,, ) this increases the Bragg

scattering angle (Bragg's law), and this in turoses a decrease of the scattering
wave intensity.

Table5 Effect of pressure on the X-ray scattering fesctaf o —Sn.

X-ray scattering factor at a pressure of

(k) 0.2 (GPa) 0.4 (GPa) 0.6 (GPa) 0.8 (GPa) 1.0 (GPa)
(111) A4.447 44437 44427 44417 44.407
(220) 39.562  39.547  39.532  39.518  39.503
(311) 37.426  37.410  37.393  37.376  37.360
(400) 35353 35335 35317 35298  35.280
(331) 33.009 32,988 32966 32944  32.923
(422) 30.611  30.586  30.561  30.537  30.512
(511) 30.318  30.295  30.271  30.248  30.224

(333) 29.398 29.373 29.348 29.323 29.298
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4 Conclusions

The present work shows that the semi-empirical UNOO model can be used to
simulate solids in a practical manner, because iéasonably economical to use. The
success of the approach depends on the optimunceclbithe empirical parameter
set and on the size of the LUC. Increasing the LdiX@ is expected to improve the
result accuracy and reliability as it was confirniigdHarker and Larkins [23], but the
increase of the LUC size results in a significanaréase of the processing time. The
calculated properties af —Sn are, in general, in good agreement with the abkgla
experimental values, except the direct band gape#sing pressure is predicted to
cause the following effects; a decrease of thelatesswalue of the cohesive energy, a
linear increase of the direct band gap with a pressoefficient of 0.06 eV/GPa, a
linear increase of the valence band width, a deere&the conduction band width, a
slight decrease of the electronic occupation priibalior the s orbital with a slight
increase of this probability for the p orbital, aaddecrease of the X-ray scattering
factors.
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