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Abstract 

    A large unit cell (LUC) within intermediate neglect of differential overlap (INDO) 
formalism has been used to estimate the electronic properties of Sn−α and their pressure 
dependence. The calculated properties are, in general, in good agreement with the available 
experimental values except the direct band gap. The increase of pressure is predicted to cause: 
a decrease of the absolute value of the cohesive energy, a linear increase of the direct band gap 
with a pressure coefficient of 0.06 eV/GPa, a linear increase of the valence band width, a 
decrease of the conduction band width, a slight decrease of the electronic occupation 
probability for the s orbital with a slight increase of this probability for the p orbital, and a 
decrease of the X-ray scattering factors.  
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1   Introduction 

The electronic and structural properties of tin are very sensitive to pressure conditions 
[1]. The ground state, grey tin )Sn( −α , has the diamond structure and is known to be 
a semiconductor with zero band gap (semi-metal). Tin also exists in the Sn−β  
structure (white tin) at atmospheric pressure above 13oC. The metallic Sn−β  phase is 
a tetragonal distortion of diamond with two atoms per unit cell. This phase is stable up 
to 9.5 GPa at room temperature, where it transforms to a bct form, followed by a 
transformation to the cubic bcc structure [2]. These temperature and pressure-driven 
phase transformations have caused tin to be of considerable experimental and 
theoretical interest [2-11]. 

The electronic and structural properties of complex systems like tin require a 
fully quantum-mechanical description. Accurate full first-principles calculations such 
as Hartree-Fock with correlation correction [12] and the local density approximation 
[13,14] are extremely demanding from the computational point of view. The 
development of simpler yet reliable approximate methods of calculations is therefore 
crucial to progress in this field. 
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       An alternative to first principle methods, which has already provided numerous 
significant results, is the so called the large unit cell-intermediate neglect of 
differential overlap (LUC-INDO) [15-18]. The semi-empirical LUC-INDO method is 
capable of simulating real crystals because it takes into account the property of 
periodicity. Due to its semi-empirical character and a specific parameterization 
scheme, the computer program is not cumbersome and time consuming in the 
treatment of the electronic and spatial structure of complex systems. 

A lot of studies have been carried out on the properties of tin and its phase 
transitions [1-11]. However, there are comparatively fewer studies on the pressure and 
temperature dependence of these properties. The aim of the present work is to 
investigate the effect of pressure on the electronic and structural properties of Sn−α  
using the LUC-INDO formalism which will be outlined in the next section. 

 

2   Calculation method 

 A quantum-chemical semi-empirical INDO method developed especially for crystals 
[19] is used in the present work. This quantum computational formalism has been 
used with great success especially exploiting the so-called LUC (Large Unit Cell) 
model [18]. Within the method each molecular orbital is constructed as a linear 
combination of atomic orbitals [19] in order to express the wave function of the 
system. Each energy value is calculated by the HF self-consistent field method and 
the total energy of the system is obtained. The basic idea of LUC is in computing the 
electronic structure of the unit cell extended in a special manner at k=0 in the reduced 
Brillouin zone. This equivalent to a band structure calculation at those k points; which 
transform to the Brillouin zone center on extending the unit cell [18]. 

 The crystal wave function in the LUC-INDO formalism is written in the 
following form:  
 
 

∑∑ −= −

v
v

p
vppkLrk TikTrCN )1().exp()(2/1
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where NL is the number of LUCs in the crystal, Cpk denotes the combination 
coefficients of the hybridized orbitals, φ  is the atomic wave function, k is the wave 
vector, and Tv denotes the lattice translation vector. The Hartree-Fock equation in this 
case ( Rothan-Hall equation ) can be written as [20]: 
 

( ) )2(0=−∑ pkpqkkpqk
p

CSF ε

 
where the summation index p goes over all the atomic states of the LUC, Fpqk 
represents the Fock Hamiltonian which is given by  
 

( ) ( ) ( ) )3(.exp vvq
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and Spqk is the overlap integral defined by  
 

∑ 〉−−〈=
v

vvqoppqk TikTrTrS )4().exp()(/)( φφ  



 3

where HT in Eq.(3) represents the Hamiltonian operator of the total energy ET which 
is defined as  
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where the first term of the right side of Eq.(5) represents the inter-nuclear potential 
energy, and Pλσ is the density matrix which has the following expression: 
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The summation is over the occupied (occ) orbitals only. core

vH µ  refers to the matrix 

element of the Hamiltonian of a single electron in the field of the nuclei, and its 
operator representation is  
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where ZA is the core charge, and the summation is over all nuclei. It should be pointed 
out that our calculations are carried out at k=0, so k value in eqs.(1,3,4,6) is set to 
zero. For more details of LUC-INDO formalism and the final form of the Fock matrix 
elements at k=0, see Refs [15-22] . The Roothan-Hall equation are solved by first 
assuming an initial set of the linear expansion coefficient (C pk ), generating the 

density matrix (Pλσ ), and computing the overlap integral and the first guess of the 

Fock matrix elements (Fpqk ). Then one can calculate the electronic energy (Ee ), and a 

new matrix of Cpk  coefficients can be obtained. This procedure is continued until 

there is no significant variation between the calculated value of Cpk  and E of the 

successive iterations.  

An initial guess of the wave function is predicted using the basis set and 
adopting Slater-type orbitals [19]. The initial guess of the wave function is important 
since an optimum guess reduces the number of iterations performed to obtain the 
converged electronic energy. A large number of iterations will result in an 
accumulation of the computational errors. The sp3 initial guess of the wave function is 
given as an expected linear combination of the atomic states of one cell. The tolerance 
of convergence of the total electronic energy adopted in our calculations is 4103 −×  
eV. A large unit cell of 8 atoms, which is the conventional Bravais lattice of the 
diamond structure, has been used. Interactions of the atoms in the central Bravais 
lattice with the surrounding atoms up to the fourth neighbors are included. It should 
be pointed out that the increase of the LUC size will result in an increase of the results 
accuracy [23], but this complicates the calculations and needs very long time in 
comparison with the time needed for 8-atom LUC calculations. 
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3   Results and discussion  

3.1   Choice of empirical parameters 

 

The empirical parameters included in the LUC-INDO method are the orbital exponent 

ζ , the bonding parameter 0β , )AI(
2

1
ss + , and )AI(

2

1
pp + . The symbols I and A 

refer to the ionization potential and the electron affinity respectively. The optimum 
values of these empirical parameters used for Sn−α  in the present work are listed in 
Table 1. The value of the orbital exponent ζ  determines the charge distribution of 
electrons around the nucleus. This parameter is varied till the total energy reaches its 
minimum value. As a consequence, this parameters is chosen in the same way of the 
ab intio methods. Comparing the ζ  value for Sn−α  crystal with that obtained by 
Clementi and Roetti [24] for atoms, shows that the ζ  value for solids is larger than 
that for atoms. This indicates the contracted charge distribution for solids and the 
diffuse charge distribution for atoms. The absolute value of the bonding parameter oβ  
of Sn−α  crystal is noted to be much less than that for molecules [25]. This can be 
explained by noting that the number of bonds in solid is higher, then the interaction 

energy is distributed over all these bonds. The value of the 
2

1
)AI( ss +  parameter of 

Sn−α  crystal is less than the corresponding value of the tin free atom. This indicates 
that the s orbitals of the solid are less connected to their atoms than in the free atom. 

A reverse observation is reported for the 
2

1
)AI( pp +  parameter. 

 

Table 1   Empirical parameters used in the present work for Sn−α . 

Parameter  Value 

)u.a( 1−ζ  1.9965 

)eV(oβ  -5.3345 

(eV)  )(
2

1
ss AI +  -9.452 

(eV)  )(
2

1
pp AI +  -5.632 
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          3.2    Electronic and structural properties  

 

Using the computational procedure described in section 2, the electronic and 
structural properties of Sn−α  crystal at 0 K and zero pressure are calculated as listed 
in Table 2 in comparison with other computational and experimental results. 

The equilibrium lattice constant (a0) is determined by plotting the total energy 
as a function of the lattice parameter, as depicted in Fig. 1. The calculated value of the 
equilibrium lattice constant (12.263 a.u) is in good agreement with the experimental 
value of 12.255 a.u [26]. 
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Fig.1   Total energy of )Sn( −α  as a function of lattice constant  

 

 The cohesive energy is calculated from the total energy of the large unit cell. 
Since the large unit cell in the present work is composed of 8 atoms, the cohesive 
energy can be determined from the following expression: 

                                    0free
T

coh EE8/EE −−=                     (8) 

where Efree denotes the free atom sp shell energy, E0 is the vibrational energy state, 
which is referred to as zero-point energy, and its value is 0.03 eV [28]. The cohesive 
energy value of present work (-3.144 eV) is also in good agreement with the 
experimental value of -3.14 eV [27]. This is due to the including of the exchange 
integrals, correlation correction, and zero-point energy in the present analysis. The 
correlation correction is the correction included to take into account the fact that the 
motions of electrons are correlated pairwise to keep electrons apart. Correlation 
energies may be included by considering Slater determinates composed of orbitals 
that represent excited state contribution, and this method of including unoccupied 
orbitals in the many body wavefunction is referred to as configuration interaction (CI) 
[20]. Another method to estimate the correlation correction, which is used in the 
present work, is the Moller-Plesset perturbation theory [20]. This correction is 
calculated to be 0.27 eV. 
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Table 2   The electronic and structural properties of Sn−α  crystal obtained 
in  the present work in comparison with other results. 

Property 
Computational 

Experimental value 
Present work Others 

Lattice constant  

(a.u) 

12.263 12.24 [2] 

12.216 [1] 

12.255 [26] 

Cohesive energy  

(eV/atom) 

-3.144 -2.8 [5] 

-3.723 [1] 

-3.14 [27] 

Valence band width  

(eV) 

11.87 10.6 [5] ----- 

Direct band gap 

(eV) 

1.76 2.6 [5] 0.0 [27] 

Conduction band width 
(eV) 

5.2 ------ ----- 

Hybridization state  s1.37 p2.63 ----- ---- 

 

The calculated direct band gap is considerably larger than the experimental 
value. A similar anomaly was also obtained by Svane [5] using the Hartree-Fock 
approximation. The large computational value of the direct band gap can be attributed 
to the approximations involved in the LUC-INDO formalism and Hartree-Fock 
method, and to the perturbative treatment of the correlation correction [29]. However, 
the available non-perturbative correlation correction method takes nearly ten times the 
computational time needed in Moller-Plesset method. The most significant 
approximations that affect the band gap are: 

I- Using equal values of ζ  and 0β  for s and p wavefunctions. The difference 

between bonding and anti-bonding states is directly proportional to 0β S, where 
the overlap integral S is a function of ζ . The percentage different of ζ  between s 
and p orbitals was reported to be 14.4% for tin [24]. 

II-  Neglecting the core states will also result in a neglect of its effects on the 
distribution of the outer valence electrons. 

III-   Using the 5s 5p orbitals only without the inclusion of the 4d orbital. 
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The eigenvalues of the high symmetry points used to determine the band structure are 
listed in Table 3, in comparison with the corresponding values calculated by Svane 
[5]. 

 

                   Table 3   Energy bands of Sn−α  at Γ  and X high symmetry points. 

Symmetry point                 Eigenvalue (eV) 

Present work Ref. [5] 

1Γ  -12.04 -16.0 

X1V -7.08 -11.2 

X4V -2.8 -3.9 

25Γ  0.0 0.0 

2Γ  1.5 2.6 

X1C 4.37 4.39 

X4C 6.92 - 

15Γ  5.19 6.6 

 

Some physical properties of solids can be determined using the analysis 
described in the preceding section, such as the electronic charge density and the X-ray 
scattering factor,.. The valence electrons charge density ))r(( eρ  can be expressed as:  

                         )r()r(P)r( qp
p q

pq φφ=ρ ∑∑                                               (9) 

The electronic charge density for some planes of α -Sn crystal is displayed in Fig. 2.                             

                        

                          (a)                                                                       (b)                            
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                             (c)                                                                        (d) 

                                                    

 Fig.2  Valence charge density ( in atomic unit) of Sn−α  in the: (a) (001) plane, (b) 
(400) plane, (c) (200) plane, and (d) (110) plane. 

 

         The X-ray scattering factor (fj) is defined by [27]. 

                                     dV )r.iGexp(  )r(f ej −ρ= ∫      (10) 

where G is the reciprocal lattice vector. In Table 4, the calculated X-ray scattering 
factors for Sn−α  are listed in comparison with other computational [30] and 
experimental [31] results. The calculated X-ray scattering factors are in good 
agreement with the experimental values. 

 

 

        Table 4   Calculated X-ray scattering factors of Sn−α  compared with 
other results. 

)(hkl  
X-ray scattering factor 

Present work HF[30] Experimental [31] 

(111) 44.45 44.47 43.59 

(220) 39.57 39.56 38.79 

(311) 37.44 37.43 37.40 

(400) 35.37 34.54 35.12 

(331) 33.03 33.08 33.17 

(422) 30.63 31.01 30.19 

(511) 30.34 29.93 28.63 

(333) 29.42 29.93 28.63 
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3.3   Effect of pressure on the properties of Sn−α  

 

The pressure dependence of the electronic structure can be predicted from the present 
computational analysis. The pressure dependence of the lattice parameter is 
determined using the Murnaghan [32] equation of state: 

                                    

                (11)                    
B3

1

0
0 B

P
B1aa

−









+=             

 

where a is the lattice parameter at pressure P, a0  is the lattice constant at zero 

pressure, B0  is the bulk modulus at zero pressure, and B  represents the pressure 

derivative of the bulk modulus and its value for Sn−α  is 4.6 [33]. The variation of 
the lattice parameter as a function of pressure for Sn−α  is depicted in Fig. 3. This 
figure was plotted using the experimental value of B 0  of 53 GPa [34] and the 

calculated value of 
_

B  of 4.6 [33]. 
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                                          Fig.3   Lattice constant of )Sn( −α as a function of pressure. 

 

The pressure dependence of the cohesive energy, direct band gap, valence 
band width, and conduction band width as predicted from our analysis is shown in 
Fig. 4, Fig. 5, Fig. 6 and Fig. 7 respectively. 
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As it is obvious from Fig. 5, the direct band gap increases linearly with the 
increase of pressure, and the pressure derivative of the direct band gap equals 0.06 
eV/GPa. Wei and Zunger [33] have determined the pressure derivative of the band 
gap of the three main transitions; Γ - X, Γ - L, and Γ - Γ  for α -Sn to be -0.01, 0.059, 
and 0.166 eV/GPa respectively. The direct band gap is determined from the energy 
difference )( 252 Γ−Γ . The observed linear increase of the direct band gap with 

pressure is due to the linear increase of the 2Γ  energy with respect to the 25Γ  energy 

as found from the present analysis, and also by Bassani and Liu [3]. The valence band 
width is calculated from the energy difference )( 125 Γ−Γ . The 1Γ  state is shown to 

decrease linearly with the increase of pressure, and this causes a linear increase of the 
valence band width as depicted in Fig. 6. The conduction band width can be 
determined from the energy difference )X( 2C4 Γ− . Although the X4C energy is shown 

to increase with pressure, the conduction band width decreases with pressure as 
shown in Fig. 7 because the increase of 2Γ  energy is more than the increase of X4C 
energy. 

It is found that the s state occupation decreases with the increase of pressure as 
in Fig. 8, whereas the p state occupation increases with the increase of pressure as in 
Fig. 9. 

 
 

Fig.4  Effect of  pressure on the cohesive energy of grey tin. 

 
Fig.5  Effect of  pressure on the direct band gap width of grey tin. 

 

Fig.6  Effect of  pressure on the valence band width of grey tin. 

 

Fig.7  Effect of  pressure on the conduction band width of grey tin. 
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Fig . 8   Effect of pressure on the hybridization state of the s orbital of grey tin. 
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Fig . 9   Effect of pressure on the hybridization state of the p orbital of grey tin. 

 

The present works shows that the X-ray scattering factors decrease as pressure 
increases. This behavior is obvious in Table 5. This can be interpreted as follows: 
increasing pressure decreases the inter-planer distance )d( hkl , this increases the Bragg 

scattering angle (Bragg's law), and this in turn causes a decrease of the scattering 
wave intensity. 

Table 5   Effect of pressure on the X-ray scattering factors of Sn−α . 

)(hkl  
X-ray scattering factor at a pressure of 

0.2  (GPa) 0.4  (GPa) 0.6 (GPa) 0.8 (GPa) 1.0 (GPa) 

(111) 44.447 44.437 44.427 44.417 44.407 

(220) 39.562 39.547 39.532 39.518 39.503 

(311) 37.426 37.410 37.393 37.376 37.360 

(400) 35.353 35.335 35.317 35.298 35.280 

(331) 33.009 32.988 32.966 32.944 32.923 

(422) 30.611 30.586 30.561 30.537 30.512 

(511) 30.318 30.295 30.271 30.248 30.224 

(333) 29.398 29.373 29.348 29.323 29.298 
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4 Conclusions  

The present work shows that the semi-empirical LUC-INDO model can be used to 
simulate solids in a practical manner, because it is reasonably economical to use. The 
success of the approach depends on the optimum choice of the empirical parameter 
set and on the size of the LUC. Increasing the LUC size is expected to improve the 
result accuracy and reliability as it was confirmed by Harker and Larkins [23], but the 
increase of the LUC size results in a significant increase of the processing time. The 
calculated properties of Sn−α  are, in general, in good agreement with the available 
experimental values, except the direct band gap. Increasing pressure is predicted to 
cause the following effects; a decrease of the absolute value of the cohesive energy, a 
linear increase of the direct band gap with a pressure coefficient of 0.06 eV/GPa, a 
linear increase of the valence band width, a decrease of the conduction band width, a 
slight decrease of the electronic occupation probability for the s orbital with a slight 
increase of this probability for the p orbital, and a decrease of the X-ray scattering 
factors.  
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