انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

Homogeneous differential equation

Share |
الكلية كلية العلوم     القسم قسم الكيمياء     المرحلة 2
أستاذ المادة فؤاد حمزة عبد الشريفي       13/10/2018 16:39:27
equation 2-Homogeneous differential
Definition: (Homogeneous function of degree )
A function is called homogeneous of degree if
Example:




Consider the differential equation if and are both homogeneous and of the same degree. Then the ODE is homogeneous and it can be in the form:


This suggests that might help. In fact, write



Then

Which is separable

Example 1: Solve the ODE
Solution









Example 2: Solve
Solution









Example 3: Solve
Solution






equation 2-Homogeneous differential
Definition: (Homogeneous function of degree )
A function is called homogeneous of degree if
Example:




Consider the differential equation if and are both homogeneous and of the same degree. Then the ODE is homogeneous and it can be in the form:


This suggests that might help. In fact, write



Then

Which is separable

Example 1: Solve the ODE
Solution









Example 2: Solve
Solution









Example 3: Solve
Solution



































المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .
الرجوع الىلوحة التحكم